A Petri-Net-Based Process Engine

Holger Burbach
Volker Gruhn
LION GmbH

Universitatsstrafie 140

D-44799 Bochum
Federal Republic of Germany
[burbach,gruhn]@lion.de

Abstract

Software process management and business process management have been areas of
research for some years now. In both areas, the notions of process guidance, process
control and process enaction have been intensively discussed. A component used to
govern a process according to its model is usually called a process interpreter or a process
engine. While the question of suitable enactable modeling languages is thoroughly
discussed, the question what the key functionalities of a process engine are is hardly
considered. In this article, we discuss the key functionality of a process engine and
we delineate the algorithm implemented by the process engine in the FUNSOFT net
approach. Moreover, we discuss the communication links between a process engine and
other components of a process management environment.

Keywords
process management, process enaction, process engine, FUNSOFT nets

1 Introduction

Software process management is an area of increasing interest [6, 14, 16]. The research in this
area has yield basic progress in software process modeling and analysis. Several prototypes of
systems supporting software process modeling and analysis (and to some extent also process
enaction) have been developed [1, 2, 15, 12, 18]. Despite some major process modeling and
analysis projects, process enaction experience for large-scale software processes is hardly
available.

The management of business processes has gained some attention by the use of buzzwords
like business process (re-)engineering, process innovation, lean management, and total quality
management [9, 19]. Enaction of business processes is often called workflow management [11].

In the following, we use the term process as abbreviation of software process or business
process. To manage a process means:

. to model a process. A process model is understood as a description of properties
of processes. It defines activities to be carried out in processes, their order, types of
objects to be manipulated during the process and organizational entities involved in the
process. In the software process community, the question of what a software process
modeling language should look like is discussed intensively [1, 15], but no consensus
of what the ideal process modeling language is has been reached. Instead of that, a

common understanding of entities to be captured in process models has been achieved
[13].

e to analyze process models. Process model analysis helps to identify deadlocks within
and between processes, expected process duration, and idle times of resources needed
in processes.

e to enact processes, i.e. to govern a real process on the basis of prescriptions and def-
initions given in the model. A component governing a real process is called process
engine in the following. Process enaction is also called process guidance (in case of
rather loose coupling between process participants and the process engine), process
monitoring (in case of just recording what happens without influencing the course of
the process), or process control (in case of rather strict control of process participants
by the process engine) in the literature [4].

While process modeling and process (model) analysis have been extensively discussed in the
literature, process enaction mechanisms and functionalities are hardly subject to discussions.
This is the more surprising, the more process enaction is claimed to be the ultimate goal
of process management. In this article, we identify basic functionalities of process engines
and we propose an implementation of these functionalities. For doing so, we relate to the
FUNSOFT net approach to process management.

In section 2, we discuss the general architecture of enaction components in order to set the
scene. Section 3 explains those features of the FUNSOFT net approach which determine its
process engine implementation. This is done by means of a software process example. Then,
section 4 discusses the process engine algorithm implemented in the FUNSOFT net approach
and the communication links of FUNSOFT net process engines. In section 5, we discuss the
enaction of processes following the process model described in section 3. Finally, section 6
concludes this article with reporting our experience in process enaction.

2 Architecture of a process management environment

The ultimate goal of process management is to provide guidance and assistance to people
participating in real-world processes and, thus, to ensure that actual processes do not deviate
from their models. This ultimate goal requires that prescriptions defined in process models
are checked at process runtime in order to drive processes into the right direction. First
of all, that means to identify which activities can be executed in the current process state.
Activities which can be executed are either offered to all persons who have the permission
and the qualification to participate in them (if these activities require human interaction) or
they are executed automatically as soon as all their inputs are available.

Independent from the process modeling language used, process enaction has to provide some
basic functionalities. In order to identify these typical functionalities we start from the ref-
erence architecture proposed by the workflow management coalition [17]. This architecture
is shown in figure 1. It identifies the Workflow Enactment Engine as central enaction com-
ponent, which communicates with:

¢ modeling tools (1) (in order to allow the modification of process models),

. an administration and monitoring tool (5) (in order to allow to start, interrupt, resume,
finish processes),

e worklist tools (2) and other workflow engines (4) (in order to allow interoperability
between workflow tools of different vendors), and

e invoked applications (3) (in order to allow the integration of existing software into new
workflow models).

Process
Definition
Tools
Administer Other
& Workflow Workflow
Monitor Enactment Engines

Engine

Worklist
Tools

Invoked
Apps

Figure 1: Reference architecture of workflow management systems

Based on the experience gathered in developing;:

e the process-centered software engineering environment ALF [4],

e the software process management environment MELMAC [3], and

e the business process management environment LEU [5],

we propose a more detailed architecture for process enaction components. This architecture

is still independent from the process modeling language used, but it reveils some more details
than the general architecture shown in figure 1.

Process management

environment controller

Enaction components

start
suspend insert (->)
shutdown

Agenda
selected entry (<-)

resume

fill entry (->) Agenda
troll Agenda
selected entry (<-) controller
Process engine Agenda |
start retum controller entry for agenda (->)
activity ack (<-) remove entry (->)
>) selected entry (<-)
read
Activity write
handler
read read

r%
write
Process models/
Process states database

Figure 2: Architecture of enaction components

Figure 2 represents a general architecture of enaction components. Boxes represent compo-
nents (i.e. module hierarchies). Arrows between boxes indicate that there is a call-relationship

between these components. The annotations of arrows give examples of demanded services.
The component Process engine, for example, calls the service start activity from component
Activity handler. Between some components we find double-headed arrows (e.g. between
Process engine and Agenda controller). This indicates a bidirectional communication between
these components. In that case, the arrow annotations indicate which service is demanded
by which component (e.g. the Process engine asks the Agenda Controller to fill entries into
agendas (service fill entry), and the Agenda controller returns entries which have been se-
lected (service selected entry)). All these components could be implemented as individual
operating system processes, which communicate with each other by message transfer and by
means of a commonly used database (Process models / Process states database).

The main functionality of the enaction components and their interfaces to other components
are discussed in the following:

. There is one Process engine for each process running. It can be useful to understand
a large project as a set of communicating software processes in order to keep them
manageable [7]. Therefore, more than one process engine may be necessary. Process
engines can be started, suspended, shut down, and resumed by the Process management
environment controller. The process engine for a process P identifies all activities of
P for which all inputs are available and which, therefore, could be executed. In case
of automatic activities, it starts them immediately by sending messages to the Activity
handler. In case of manual activities, corresponding entries are sent to the process
engine’s Agenda controller. To identify executable activities, a process engine accesses
the database that stores process models and process states. When an activity is finished,
the state of the process concerned is modified.

e The only functionality of the Activity handler is to receive execution requests from
all process engines, to start the requested activities, and to return whether or not the
execution has been successful.

e Agsoon as a process engine is started, an Agenda controller is created. An agenda
controller administrates all manual activities of its process. It is connected to the
agendas of all persons who may participate in the process. The set of persons who
may participate can be identified by checking permissions which are also stored in the
underlying database. If a manual activity is executable, the process engine sends a
message to the agenda controller. The agenda controller identifies the process partici-
pants who have the permission to participate in this activity, and sends a corresponding
message to the agendas of these potential participants. If a manual activity is selected
by a process participant, this information is returned to the agenda controller and from
there it is passed to the process engine. The process engine starts the activity at the
workstation of the participant (with the help of the Activity handler).

. There is one Agenda for each process participant. As soon as a participant logs into the
process management environment, an agenda is started and automatically connected
to the agenda controllers of all processes the participant has permissions to take part
in.

The most sophisticated part of the enaction algorithm is implemented by the process engine.
The structure of this algorithm is language-independent, but, of course, individual functions
are closely related to the process modeling language used. In this article, we discuss the
process engine algorithm as implemented in the FUNSOFT net approach. For that purpose,
the FUNSOFT net example of section 3 highlights all FUNSOFT features which are rele-
vant to enaction. This discussion is not only a prerequisite for understanding the process
engine implementation, but it also helps to illustrate the price paid (in terms of algorithmic
complexity) for a very labor-saving process modeling language.

3 The FUNSOFT net approach to process management

In the FUNSOFT net approach, which, for example, is implemented in the LEU environment
[5] and in the MELMAC environment [2], process models are created by integrating data
models, activity models, and organization models.

Data models describe types of objects to be manipulated and the relationships between object
types. They are represented by extended entity/relationship models.

Activity models describe the activities to be executed within processes and their order. They
are represented by FUNSOFT nets [8]. FUNSOFT nets are high-level Petri nets adapted to
the requirements of process modeling. T-elements of FUNSOFT nets represent activities to
be executed in a process. They are called agencies. An agency is activatable (i.e. it can be
fired) as soon as all its input parameters are available. To fire an agency means to execute
the activity represented by the agency. S-elements of FUNSOFT nets represent object stores.
They are called channels. An object being stored in a channel is also called a token marking
the channel (in Petri net terminology). Edges from channels to agencies describe, that an
object stored in the channel is used as input parameter for the agency, edges from agencies
to channels describe where output parameters of agencies are stored.

Table 1 describes how general Petri net terminology, FUNSOFT net terminology and process
modeling terminology match. This survey may be helpful for readers being familiar with one
of those worlds.

Process modeling Petri net FUNSOFT net
terminology terminology terminology
activity T-element agency

object store S-element channel
object/document token token
object in a certain state | token marking an S-element | token marking a channel
data flow edge edge
activity execution T-element firing agency firing
executable activity activatable T-element activatable agency

Table 1: Mapping of process modeling, Petri net, FUNSOFT net terminology

Organization models are represented by organization charts. Data models, activity models,
and organization models are integrated. Persons and sets of permissions are associated with
organizational entities. Thereby, it is defined which persons are allowed to participate in
which activities, and which objects of which types can be manipulated by whom. Object
types are assigned to channels. A channel to which a certain type is assigned can only be
marked with objects of that type.

In the rest of this article, we discuss those features of FUNSOFT nets which determine the
process engine algorithm. Later, in section 4, we revert to these features by explaining how
they are handled by the enaction algorithm. For a complete discussion of FUNSOFT nets
we refer to [8].

In the following example, we consider a resource management process in which all resources
are administrated. For this example, we focus on computer hardware and computer software.
From time to time, resources are examined in order to decide whether resource replacements
or purchases are necessary. If it is decided to replace a resource, either a new resource
is designed, e.g. by writing a new program to replace an existing one, or a new resource
is bought. Figures 4 to 7 describe this process. The structure of the example discussed is
illustrated in figure 3. It shows that the process models fro resource management and resource

purchase are related by interface channels. The process model resource test is bound to two
agencies of process model resource management. Finally, process model perform resource test
is a refinement of an agency of process model resource test.

resource interface resource
management channels purchase
bought resource,

resources to be bought

process model

resource test

bound to agencies

test buyable resources
test designed resources

resource
test

process model

perform resource test

refines agency

perform resource test

perform
resource
test

Figure 3: Structure of the software process example

resource record

resource record

D

bought

resources

resource record

D

resources

to be bought

&l

Lok

test
buycble resource

update existing select
existing resources resources Jor change
resoureq record
)

i changing
decide resources
change

resourcd record
=
]
- =

tested .
print
resources
resource test
resource record

replacement

test arranged test

resource record

test

designed resource

replacement
designed

design
Tesource

Figure 4: Resource Management

In figure 4 to figure 7 we recognize different icons representing agencies:

e agencies representing manual activities (e.g. select for change in figure 4),

. agencies representing automatic activities (e.g. print resource test in figure 4),

. agencies with processes bound to them representing the call of processes from within
other processes (e.g. test buyable resource in figure 4; described below),

e refined agencies which are used to hide details on a lower level (corresponding to the
notion of T-element refinement as defined in [10]) (not occurring in the example),

resource record

Y

resource record
FESOUYTE

r::n:)’cuh find distributor record create
to be boug distributor orders
WS
distributor
resource order
resource record resource record
D @
hought send installed
TESOUYCES TESOUYCES
new bought resource FESOUICE
Figure 5: Resource Purchase
IN resource record resource record OUT resotree record
GiP|
O R O
=]
resourece install installed perform tested
to be tested test resource resource
resource resource test

Figure 6: Resource Test

resource test record

test

resource record
for resource

installed

design resource record perform
test resource

test test

resource
to be tested

Figure 7: Perform Resource Test

OUT resource record

tested
resource

e refined agencies marked as an agenda bypass. That means, all agencies in such a
refinement represent closely related activities which have to be carried out by only one
person (e.g. perform resource test in figure 6; described below).

A channel containing at least one object is represented by a circle containing another filled
circle. Circles with a vertical line inside represent interface channels (see below).

The process creates and manipulates objects of several types. Since the main subject of this
article is the enaction algorithm, the data model is not discussed here. The name of an object
type assigned to a channel can be found above the channel. The meaning of the object types
used in the example is as follows:

e An object of type Resource Record contains all information about a concrete resource,
e.g. name, location, manufacturer. It also contains references to optional replacement
resources together with the descriptions of tests of these resources.

. An object of type Resource Distributor Record contains all information about a distrib-
utor.

. An object of type Test Record contains all information about a resource test.

e An object of type Resource Order contains all information about an order being sent
to a distributor.

All modeling concepts mentioned in the following example are explained in a glossary at the
end of this section. Terms appearing in the glossary are underlined when they are used for
the first time. At the start of the process, the channel existing resources in figure 4 contains
records of all available resources.

A time-dependent predicate' is assigned to the agency select for change. The predicate causes
the agency to fire once a week. Thus, the agency select for change appears in the agenda
at a specified moment, and can be selected together with a resource record taken from the
channel existing resources.

We assume that the value of the laddering attribute? for the agency select for change has
been set to 5 when editing the process model. This means that five process participants can
in parallel select resources to be changed.

When the agency select for change is executed, it moves the resource record selected into the
channel changing resources. As soon as this channel contains at least one resource record,
the agencies arrange test and design resource appear in the agenda of the members of the
department of resource management. They either arrange a test for a resource that is bought,
or they start the design of a resource that is developed internally. For each member of
the department the laddering attribute of the two agencies in the process model has to
be increased in order to enable them to work in parallel. After testing the bought or the
internally developed resource, a resource record is written into the channel tested resources.

In our example, the process model resource test of figure 6 is bound to the agencies® test
designed resource and test buyable resource of figure 4. This binding is based on the channel
assignments as described in table 2 (i.e. the IN channel of process model resource test is
mapped to channel replacement test arranged in the context of agency test buyable resource
of figure 4).

In the process resource test, first the resource to be tested has to be installed. A member
of the test group will be in charge of the test installation. To notify him of the installation

LCompare to Predicates in the glossary.
2Compare to Laddering attribute in the glossary.
3Compare to Processes bound to agencies in the glossary.

required, the agency install resource appears in his agenda. After the installation, a single
tester can design and carry out the test. These two tasks are described in figure 7, which
shows a refinement of the agency perform resource test of figure 6.

The refined agency perform resource test in figure 6 is marked as an agenda bypass*. That
means that all activities of the resource test have to be carried out by only one process
participant. Thus, after carrying out the design test activity (which is the first activity of the
refinement of agency perform resource test described in figure 7) all other activities of this
refinement are immediately started as soon as they are activatable. The process participant
does not notice that different agencies are fired, because the agenda is bypassed.

When the test of a resource is finished and the record arrives in the channel tested resources
of figure 4, the agency print resource test is automatically® executed by the process engine.
The agency prints the description and the results of the latest test found in the record.

In order not to disturb the execution of the agency decide change the agency print test copies®
the resource record.

A predicate assigned to the agency print test ensures that the agency is executed only once
for each record arriving in the channel. In parallel to the execution of print resource test,
the agency decide change is put into the agenda of the head of the department of resource
management. Depending on the decision taken, the resource record is written into one of
three possible postset channels:

e if areplacement resource is to be bought, the record is written into the channel resources
to be bought,

. if the resource is not to be replaced anymore, the record is written back into the channel
existing resources,

e if an alternative replacement resource has to be considered, the record is written back
into the channel changing resources.

The interface channel” resources to be bought is used to exchange resource records between the
resource management process (figure 4) and the purchase process (figure 5). In the purchase
process, resources are bought after it has been decided to do this in the resource management
process.

For each resource record arriving in the channel resources to be bought (figure 5), a distributor
is looked for in the agency find distributor. The pair of resource and distributor is written
into the postset channels which are read by the agency create orders (figure 5). Within this
activity, the order is created and sent to the distributor. The object representing the order
is written into the channel orders being handled.

For each ordered resource delivered, the agency install resources reads the respective object
from channel orders being handled, creates a resource record, and writes it into the channel
installed resources after the resource has been installed. The agency send new bought resource
reads all the records and writes the resource records into the channel bought resources. This
channel is accessed by the agency update ezisting resources of figure 4. Thus, the new resource
record is put into the resource pool.

In the following glossary, the modeling concepts mentioned in the example above are explained
in more detail. What impact these concepts have on the process engine algorithm is discussed
in section 4.

4Compare to Agenda bypasses in the glossary.
5Compare to Automation attribute in the glossary.
6Compare to Copy access to channels in the glossary.
"Compare to Interface channels in the glossary.

Predicates:
A predicate is a boolean function specifying conditions which have to be fulfilled before
an agency can be fired. With the help of predicates, conditions depending on the
values of objects can be specified. Furthermore, predicates can be used to specify
time-dependent conditions.

Laddering attribute:
Each agency has an attribute called laddering attribute. The value of this attribute is
a positive integer with 1 as default. This value specifies how often an agency can be
fired simultaneously. It eases modeling, because the degree of parallelism can easily be
defined and modified.

Processes bound to agencies:

Binding a process model to an agency supports the reuse of process models and is a
mechanism to structure complex process models. In a process model, which is supposed
to be bound to an agency, input and output channels have to be identified explicitly.
This is necessary in order to specify how the process model is integrated into the overall
process model. These channels have IN respectively OUT as prefix of their names. In
binding a process model to an agency, these channels are mapped to channels in the
pre- and postset of the agency the model is bound to. Agencies with process models
bound to them are represented by special icons (e.g. agency test buyable resource in
figure 4). In this example, the mapping of IN and OUT channels of the process model
resource test to the pre- and postset channels of the agencies test buyable resources and
test designed resource is described in table 2.

When an agency to which a process model is bound is fired, a new son process is created.
The objects to be read by the firing agency are shifted to the son process according to
the channel assignments in the two process models. Then, the son process is started
like any other process. When there are no activatable or active agencies left in the
son process, the objects in the OUT channels are shifted back to the father process
according to the channel assignment. These objects are treated as if they had just been
created by the bound agency when terminating its firing.

Agenda bypasses:

Refined agencies have a boolean attribute called agenda bypass. Its default value is
FALSE. If the value is set to TRUEF, the agency is represented by a special icon (e.g. the
agency perform resource test in figure 4). The agenda bypass attribute determines how
manual agencies of the refinement are treated. The first agency of such a refinement
selected by a process participant initiates that a new son process is created. The
treatment of this son process resembles the treatment of processes bound to agencies.
However, agenda bypasses use the same process engine for father and son process. The
treatment of such a bypass son process differs from processes bound to agencies in the
way activatable agencies are handled.

e First of all, only agencies belonging to the bypassed refinement may fire. Other
agencies are suspended as long as the bypassed refinement is carried out.

) The second difference is the way objects are handled after the agency has fired.
For channels into which objects have been written, it is checked whether they
belong to the refinement or whether they are in the postset of the refined agency.
If they are in the postset, the objects are immediately shifted back to the father
process with all consequences for activation checks.

e The third difference is the way manual agencies are handled. If an agency of the
bypassed refinement has already been selected by a process participant, then all
activatable manual agencies are handled as if this process participant had selected
them already. The bypass handling is terminated automatically when there is
no activatable or active agency left in the bypassed refinement (i.e. the refining
FUNSOFT net is dead).

10

Agenda bypasses ensure that certain parts of a software processes are carried out by
only one process participant. The process participant is not known in advance, but the
person who starts such a process part is also responsible for the rest of this process
part.

Automation attribute:
Each agency has a boolean attribute called automation attribute. The default value
is FALSE. When editing a process model, this attribute may be set to TRUE. The
attribute specifies whether the firing of the agency may be started without informing
any process participant about it.

Copy access to channels:

Each edge linking an agency with one of its preset channels® has a boolean attribute
called copy flag. Its default value is FALSE. If the value of this attribute for an actual
edge is TRUE, a small filled circle is displayed at the start of the edge (compare edge
between channel tested resources and agency print resource test of figure 4). If the copy
flag is set to TRUE, the agency accessing a channel using this edge reads a copy of the
object. The object will not be removed from the channel. Conflicts between agencies
with copy access are solved in a way allowing the maximum number of firings, i.e. if
possible firings of agencies with copy access will be executed first. The copy flag enables
several agencies to access the same object in an easy way.

Interface channels:
Circles with a vertical line inside represent interface channels. Interface channels in
different process models represent only one channel. That means, access to an interface
channel has side-effects to all occurrences of that interface channel.

If an object is written into an interface channel, all running processes in the models of
which the interface channel occurs receive a copy of the object. If there is no running
process with read access to the interface channel, the next process with read access
receives the object. Interface channels allow easy data exchange between processes.
A process using interface channels can be easily replaced by another process without
having to change other processes, too.

4 The Process Engine Algorithm

In this section, we describe the enaction algorithm implemented in the FUNSOFT net process
engine and its embedding in the other enaction components.

The task of the process engine is to interpret a process model, identify activatable activities
and manage their execution. To realize this, the engine has to create agenda entries and to
start agency firings while working together with the other enaction components (see figure
2).

In order to describe the process engine algorithm, we first have a look at the structure of
the engine which is displayed in figure 8. An arrow from a box A to a box B means that
B is used by A. Each box represents a module. The coordination module supervises the
activities of the whole engine. The IPC (Inter-Process Communication) receiver module
analyses the messages sent from the agenda controller or the activity handler and triggers
the respective reactions of the engine. The execution module implements the algorithm de-
scribed below. It interprets processes with the help of different basic services (summed up as
a virtual component called basic services). They comprise submodules, e.g. for implementing
attributed directed graphs as an abstract data type or for database access. The IPC sender
module sends the results of the interpretation as messages to the respective operating system

8 A channel s is called a preset channel of an agency t, if there is an edge from s to tt. All preset channels
of an agency t are called preset of t.

11

I | IN resource record | OUT resource record ||

agency test buyable resource | replacement test arranged tested resources
agency test designed resource replacement designed tested resources

Table 2: Mapping of IN and OUT channels to pre- and postset of agencies to which process
model resource test is bound

coordination

I

/ IPC receiver
execution \

IPC sender

process storage

/

model storage

basic services

Figure 8: The Process Engine Architecture

processes implementing the other enaction components. The model storage module admin-
istrates the process models, the process storage module administrates the information about
processes which are currently enacted. While process model information is not modified dur-
ing process enaction (except for situations in which processes are interrupted, the process
model is modified, and the process is resumed [3]), process state information is updated after
each activity execution. All modules mentioned so far use the basic services module (for rea-
sons of simplicity the arrows from all other modules to the basic services module are omitted
in figure 8).

One central entity of the enaction algorithm is the agency incarnation. An agency incarnation
is created whenever the preset of an agency is marked and, thus, the agency is candidate to
fire. Roughly speaking, the only functionality of the enaction algorithm is to identify agency
incarnations, to check if they are executable (with respect to predicates and conflicts) and
to distribute them to the right process participants. Due to the central role of the notion
agency incarnation we describe its structure below.

typedef struct
{
unsigned int number;
/* number of the incarnation */

AGENCY_INCARNATION_STATUS ActivationStatus;
/* status of agency incarnation (conflict / no conflict
/ in agenda / firing started / firing ended) */

unsigned int RecipientIndex;
char *LayoutString;
char *DisplayString;
/* management data for communication with interpreters
performing the firing of the incarnation */

unsigned int TotalPredCount;
/* number of predicate evaluations to be performed */
unsigned int DonePredCount;
/* number of predicate evaluations already
performed */
unsigned int TruePredCount;
/* number of predicate evaluations with result TRUE */

BOOLEAN OutOfDate;
/* flag for management synchronization with other
processes; TRUE: incarnation is not valid any more
and should be deleted as soon as possible */

BOOLEAN CopyConflictExcluded;
/* flag for storing access status when checking copy

conflicts;
TRUE: non-copy conflict already detected;
FALSE: ... not detected yet */

MODEL_AGENCY BypassAgency;
/* optional reference to the decomposed agency in the
process model where the agenda bypass is marked */

PROCESS_INDEX BoundProcess;
/* optional reference to the process which is bound to

13

the agency the incarnation belongs to */
} AGENCY_INCARNATION_RECORD;

All agency incarnations of a process are stored in the process storage data structure of the
engine (compare figure 9). All tasks of the engine can be described in terms of

e creating, deleting, modifying the agency incarnations, and

e copying references to the agency incarnations to various locations.

Besides the process storage data structure, there are two major places agency incarnations
are referred to:

. the agenda (where agency incarnations are offered to process participants), and

. the agency incarnation list which contains references to exactly those agency incarna-
tions which are currently checked for executability by the process engine.

In figure 9, the data flow of agency incarnations is shown. The boxes with dotted lines rep-
resent data structures which are internal to the process engine. The other boxes represent
enaction components. The ovals assigned to arrows between data structures and enaction
components represent routines. The routine process agency incarnation list (arrow from
agency incarnation list to agenda), for example, means that the processing of an agency in-
carnation list results in manipulating the agency incarnations offered in the agenda, and that
this manipulation is based on information available in the agency incarnation list. Another
example is the routine activation check (arrow from process storage to agency incarnation
list). When it is executed, it reads management data from the process storage data structure
in order to perform activation checks. If an agency is activatable, an agency incarnation is

created and appended to the agency incarnation list.
figure:
Algorithm Overview

firing termination

activationcheck activation check after loading

al manual activatable agency incarnations

. o outside agenda bypasses
agency incarnation list agenda
automatic agency incarnations

which have lost conflict solution

agenda entry selected

agency incarnation deletion agency incarnation start

automatic agency inc. which have won
conflict solution or
manual agency inc. in agenda bypass

manual agency incarnation
which have lost conflict solution
by timer interrupt or manual selection

Figure 9: Agency Incarnation Data Flow

14

The process engine (central box of figure 9) communicates with other enaction components
by message transfer. In fact, it can receive message of the following types and reacts to them
as follows:

° Start new process <process.model_id>:
A process following process model <process model_id> is created and started. It is
interpreted by a new process engine.

° Stop process <process_id>:
The execution of process <process_id> is stopped. All data of the process being stored
in the database remains there while the process engine terminates.

° Start existing process <process_id>:
The execution of the already existing process <process_id> is resumed. The process
was previously stopped with the message stop process <process_id>.

° Shutdown process <process_id>:
First, the command stop process <process_id> is executed. However, before the
process engine terminates, it deletes the process from the database.

] Recognize agenda selection <agency_incarnation_id> in process <process_id>:
All actions necessary to execute activity <agency_incarnation_id> are initiated. This
may mean to start a piece of software, a standard tool, or to send a message to someone.

° Recognize timer event <agency_incarnation_id> in process <process_id>:
When a conflict between a manual and an automatic agency occurs, the process
engine generates a timer event, which cause the alarm timer to ring after some
time. This ringing of the timer causes a message to be sent to the engine. Then,
the process engine solves the conflict by starting the automatic agency using the
<agency_-incarnation_id> of the process <process_id> as specified in the message.

] Recognize agency termination <agency_incarnation_id>:
The termination of an agency is handled by the process engine. <agency_incarnation id>
specifies the agency incarnation used to manage the firing. The new state is calculated,
and the process state database is updated.

° Recognize data in interface channel <channel id> in <process_id>:
A companion process engine has written an object into an interface channel
<channel_id> of process <process_id>. The message-receiving process engine iden-
tifies if agencies became activatable by the object written into channel <channel_id>.

. Check predicate in <process_id>:
From time to time this message is sent to each process engine in order to examine all
time-dependent predicates in process <process_id>.

For each of the above message types, the algorithm contains a routine to handle it. These
routines are based on shared subroutines. While the message types can easily be mapped to
functionalities visible to process participants, the subroutines used are close to the modeling
concepts of FUNSOFT nets. Thus, the relationship between message-handling routines and
concept-related subroutines bridges the gap between core functionalities of process enaction
and the handling of language-dependent modeling concepts.

Figure 10 depicts this relation. On the left hand side, message handling routines are shown.
In the middle of figure 10, we recognize the core functions of the process engine. The arrows
from the left to the middle show which message handling routines use which core functions.
Certain core functions (select start, distribute user) are not directly used by the message
handling routines, but they are internally called by other core functions. On the right of the
figure, the modeling concepts are listed. An arrow from a message handling routine or from

15

a core function to a modeling concept means that the routine / function is impacted by the
modeling concept. The core function activation check, for example, deals with predicates,
laddering attributes, and agenda bypasses, but is not concerned with automation attributes,
processes bound to agencies, copy access to channels, and interface channels.

Routine: Start new process

predicates

Routine: Stop process

laddering attribute

Routine: Start existing process

activation check

T

process agency incarnation list

processes bound to agencies

Routine: Shutdown process

agenda bypasses

Routine: Recognize agenda selection

or timer event \L
select start . .
automation attribute
Routine: Recognize agency termination \b 4\
‘ distribute user

- ’ - copy access
Routine: Recognize data in interface channel

or datain interface channel

interface channels

Figure 10: Algorithm routines and their relationship to modeling concepts

Within the process engine algorithm, key functionalities related to the modeling concepts are
used. These are identified below:

e Predicates:
Predicates have to be consulted when the activatability of agencies is checked. This
key functionality is called check predicate activatability.

e Laddering attribute:
It is necessary to handle records for each firing of an agency in order to implement the
management of the laddering attribute. This record is called agency incarnation (see
above). The key functionality is called handle firing management record.

. Processes bound to agencies:
The process engine has to be able to handle more than one process in order to deal
with processes bound to agencies. The key functionality is called handle process
hierarchy.

. Agenda bypasses:
In agenda bypasses, firings have to be started without displaying anything in the
agenda. This key functionality is called automatic agency execution. In addition
to this, the functionality handle process hierarchy is used to handle the automatic
firings of the bypass as a unit within a separate process.

16

¢ Automation attribute:
If the automation attribute of an agency is set in such a way that it indicates that
the agency is to be executed automatically, this agency is not displayed in the agenda.
Therefore, the automation attribute requires the same key functionality as agenda
bypasses: automatic agency execution.

. Copy access to channels:
For a given set of agencies, the engine has to be able to detect a firing order of maximum
length with respect to the existing copy edges. This functionality is called order firing
sequence.

e Interface channel:
The process engine has to be able to communicate with other engines in order to imple-
ment data exchange via interface channels. The key functionality is called recognize
interface channel object.

The key functionalities listed above are mentioned in the explanation of the routines for
processing the messages received by the process engine. Whenever the key functionalities
are needed in these routines, they are mentioned in the routine description. They are put in
braces, printed in bold type and in this form appended to commands which recognize them.
In the algorithm first the routines for the processing of messages are described. Then the
subroutines used by this routines follow. The routines Start new process, Stop process and
Shutdown process are left out because their actions are quite obvious.

Routine: Start existing process
This routine is called after a process has just been loaded.
Input: process

1. Execute activation check (see below) for all agencies of the process. Create a list
of all agency incarnations of activatable agencies. (handle firing management
record)

2. Execute process agency incarnation list (see below) for the agency incarnation list

just created. (handle firing management record)

3. Execute start existing process for all son processes of the input parameter process.
(handle process hierarchy)

4. If there is no agency incarnation existing in the input parameter process at the
moment, then

(a) If there are no son processes of the input parameter process then delete it.
(handle process hierarchy)

(b) Perform the dead net check recursively for the father process of the input
parameter process. (handle process hierarchy)

5. else trigger the repetitive check of time dependent predicates by Check predicate
messages.

Routine: Recognize agenda selection or timer event
This routine is called after an agenda entry is selected or the timer alarm has rung.
Input: process, agency incarnation

1. Consider all agency incarnations being in conflict to the given agency incarnation.
They are either displayed in the agenda or assigned to timer alarms. Delete all
those agency incarnations and their agenda entries respectively delete the pending
timer alarms. (handle firing management record)

2. If there is a predicate assigned to the agency the incarnation belongs to, then
evaluate it once again for the objects to be used for the firing. If the predicate
issues FALSE, then delete the agency incarnation and leave the routine. (handle
firing management record; check predicate activatability)

17

5.

Execute select start (see below) for the input parameters.

Execute activation check (see below) for all agencies of which agency incarnations
have just been deleted, for the agency of the incarnation which has just been
started, and for all agencies in the postset of the channels being in the preset of
the agency which has been started. Create a list of all agency incarnations created
during the activation check. (handle firing management record)

Execute process agency incarnation list for the agency incarnation list just created.

Routine: Recognize agency termination or data in interface channel
This routine is used to process the actions of the engine after objects have been written
into the postset of an agency. Therefore, it can be used for the two messages mentioned
above.
Input: process, agency incarnation

1.

If the process is used to manage an agenda bypass, then

(a) Check all channels into which objects have just been written whether they

belong to the part of the model the bypass has been marked for.

(b) Shift all objects from those channels which have failed the check to the father

process. (handle process hierarchy)

(¢) Execute Recognize agency termination for the father process as if the agency

incarnation belonged there. (handle firing management record, handle
process hierarchy)

Execute activation check for all agencies the preset of which has changed (i.e.
an object has been written) or which have ended their firing. Generate a list
of all agency incarnations created during the activation check. (handle firing
management record)

Execute process agency incarnation list for the list. (handle firing management
record)

If there is no agency incarnation existing at the moment, the net is dead. (handle
firing management record)

If the net is dead and the process is bound to an agency, then shift the objects
to the father process and execute Recognize agency termination for the respective
agency incarnation used to manage the firing of the bound process. (handle
firing management record, handle process hierarchy)

If the net is dead and there are no son processes of the input parameter process,

delete the process and perform the dead-net-check recursively for the father process
of the input parameter process. (handle process hierarchy)

Routine: Check predicate
This routine is used to ensure that time-dependent predicates are checked from time
to time.
Input: process

1.

Execute activation check (see below) for all agencies of the process, which have time
dependent predicates assigned to them. Generate a list of all agency incarnations
of activatable agencies.

Execute process agency incarnation list for the agency incarnation list just created.
(handle firing management record)

Subroutines used by the message processing routines:

e Routine: Activation check
This routine is used to check agency activatability.
Input: process, agency
Output: flag (activatable /not activatable), agency incarnation

18

If there are already as much agency incarnations as the laddering attribute permits,
then the agency is not activatable. (handle firing management record)

If there are channels in the preset of the agency which do not contain any objects,
then the agency is not activatable.

If there is a predicate assigned to the agency, then check it for all preset object
combinations. If there is no object combination which the predicate issues TRUE
for, then the agency is not activatable. (check predicate activatability)

Since the control flow has reached this point, the agency is activatable. Create a
new incarnation of the agency. (handle firing management record)

. Routine: Process agency incarnation list
This routine is used to process incarnations of activatable agencies. It generates all
reactions of the process engine possible after a successful activation check.
Input: process, agency incarnation list

While the agency incarnation list is not empty (handle firing management record):

1.

3.

4.

Test whether there is an agency incarnation (say A) for which holds:
incarnation A is in conflict with at least one other agency incarnation and if it is
in conflict with another agency incarnation (say B), then incarnation A accesses
the respective channel using copy access’. (order firing sequence)

If there is an agency incarnation which has passed the upper test, then

(a)

Select this incarnation for further processing. (order firing sequence)

else

(d)
()

Consider the first agency incarnation (say C) of the agency incarnation list.

If it is an incarnation of a manual agency and the process or one of its father
processes is not used to manage an agenda bypass with a user already assigned
to it, then select it for further processing.

If the process is used to manage an agenda bypass and a user is already
assigned to it, then consider all agency incarnations, otherwise consider only
those of manual agencies:

Collect from the agency incarnation list all incarnations which are in conflict
to the considered one (named C above). Enter the considered one (named C)
into the collection, too. (automatic agency execution)

Select one incarnation from the collection in a randomly equally distributed
way. Select it for further processing below. (automatic agency execution)

Delete all incarnations from the agency incarnation list except the one just
selected for further processing.

If the selected agency incarnation is an incarnation of a manual agency, then

(a)

If the process or one of its father processes is used to manage an agenda bypass
with a user already assigned to it, then
i. Consider the agency incarnation selected above for further processing. It
belongs to a certain agency. If there is a process model bound to the
agency, then

A. Create a new son process bound to the agency incarnation. (handle
process hierarchy, handle firing management record)

B. Shift the objects to be used by the agency incarnation to the input
channels of the bound process after deleting all initial objects already
existing in those channels. (handle process hierarchy, handle firing
management record)

9n order to perform as much firings as possible these agency incarnations have to be started before all

others.

19

C. Execute start existing process for the new son process. (handle
process hierarchy)
ii. else start the firing of the agency incarnation. (automatic agency ex-
ecution, handle firing management record)
(b) else display the agency incarnation in the agenda. (handle firing manage-
ment record)

. else if the agency incarnation is in conflict to an incarnation of a manual agency
and if it has never been assigned to a timer alarm since has been created, then
assign it to a timer alarm,

6. else execute select start for the process and the agency incarnation selected for
further processing.

7. Execute activation check (see below) for the agency of the incarnation just
processed.

8. Execute activation check for all agencies incarnations if which have just been
deleted.

9. Append all agency incarnations created by activation check during this run of the

loop to the agency incarnation list.

e Routine: Select start
This routine selects the proper way for the start of an agency incarnation as soon as is
has been decided to perform the start.
Input: process, agency incarnation

1. If the agency the incarnation belongs to is in a part of the process model an agenda
bypass is marked for'%, then

(a) Create a new son process for managing the agenda bypass. (handle process
hierarchy)

(b) Shift the objects to be used by the agency incarnation to the respective chan-
nels of the new son process after deleting all initial objects already existing in
those channels. (handle process hierarchy)

(¢) Delete the agency incarnation.

(d) Execute start ewisting process for the new son process. (handle process
hierarchy)

2. else if there is a process model bound to the agency, then (handle firing man-
agement record)

(a) Create a new son process bound to the agency incarnation. (handle process
hierarchy)

(b) Shift the objects to be used by the agency incarnation to the input channels
of the bound process after deleting all initial objects already existing in those
channels. Perform the shifting of the objects with respect to copy accesses.
(handle process hierarchy, copy access of channels)

(¢) Execute start ewisting process for the new son process. (handle process

hierarchy)
3. else start the firing of the agency incarnation. (handle firing management
record)
4. If it is an incarnation of a manual agency, and if the process or one of its father

processes is used to manage an agenda bypass, and the agency incarnation has
just been selected in the agenda, then (handle firing management record)

10This condition is different to: the process or one of its father processes is used to manage an agenda
bypass!

20

(a) If the input parameter process is not the one used to manage the agenda
bypass, then find the father process used for the management.

(b) Execute distribute user for the input parameter process respectively the
process just found, the input parameter agency incarnation, and the user
who has performed the selection in the agenda.

. Routine: Distribute user
This routine stores information about a user after he has selected an agenda entry
belonging to an agenda bypass.
Input: process, agency incarnation, user

Assign the user to the process.

2. Delete all existing agenda entries of the process and execute select start for them.
(automatic agency execution)

3. Execute distribute user for all son processes of the input parameter process. (han-
dle process hierarchy)

5 An enaction scenario

After having described details about the process engine and the environment it works in we
now give an example of its behavior. The example shows how the engine interprets the model
described in section 3.

Figure 11 depicts the process participants, the agenda contents, and the communicating
operating system processes. We identify the process engine with leupe, the agenda with
leuae, the process in charge of displaying dialogues (understood as one kind of implementing
manual agencies) with leude, the process executing automatic agency firings and evaluating
predicates with leuce, and the agenda controller with lewae. The communication links are
represented by lines linking the boxes which specify the processes.

Suppose that channel existing resources in figure 4 contains a resource record of a database.
Suppose that the enaction of the process had been stopped (situation 1 in figure 11) and is
going to be resumed now by the administrator (situation 2 in figure 11).

A process engine is started. The message start ezisting process is sent to it with the process
as parameter. The engine reads the process and the respective model. Then, the algorithm
is started (situation 3 in figure 11). Only the agency select for change which is activatable.
The examination of the laddering attribute of the agency yields that an incarnation may be
created. So the processing of the agency is continued. The predicate assigned to the agency
is evaluated (situation 4 in figure 11). It yields false. So there is no activatable agency. Since
there is a time dependent predicate, the engine does not automatically execute the command
shutdown process, but continues evaluating the predicate from time to time. On Monday
morning, the predicate yields true. An agency incarnation for agency select for change is
created and inserted into the agency incarnation list. Thus, the list contains one element
now. Since it is the only element no conflicts have to be solved. The incarnation is displayed
in the agendas and deleted from the list, but kept in memory for further processing as soon as
the agenda entry is selected. The agenda entries are displayed depending on the permissions
of the different process participants. If additional process participants log in, they may not
get the entry in their agenda (situation 5 in figure 11).

Suppose that the agenda entry is selected with the record of the database as parameter.
The entry is deleted from all agendas. A firing is started and the corresponding dialogue is
displayed. A new activation check is performed for agency select for change in the same way
as has taken place the first time. Since the laddering attribute had been set to 5, another
agency incarnation may be created. Predicate evaluation still yields true. An agenda entry

21

process participants

displayed on terminal device

operating system processes

1
administrator agenda
% no entry
2
4_—/—
:
start terminal
administrator
agenda
3 I]E_HF roenty
start business process
department xyz
leulc
agenda
4 % no entry leuac
evaluating predicate
department xyz
employee 1 ... employee n
agenda 1 agenda n ..
5 HEI_"A select for change! no entry @l
entry in agenda
department xyz agenda 1 agenda n
employee 1 ... employee n select for chang no entry \
dialogue
lect for change
° J! ;:/ °
)) — O
agenda entry selected ooag
department xyz dep. replacement,
employee 1 design and test [tewc F——leuae1] .. .[levaen
employee n
agenda 1 agendan |
7 %[ﬁ)j) %V%C/) select fo{ chtange design resource| leuac
arrange test I—; N -
entries in agenda
department xyz dep. replacement, agenda 1 agenda n |
employee T design and test leulc leuael | , , leuae n
employee n select for change] arrange test |
arrange test dialogue
8 arrange test leuac
— [teupe]
 — - |
selecting entry arranging test ooo m
employee n agendan
leulc I—'\eael leuae n
no entry l u 4 l l u
dialogue |
9 %» decide change leuac
= [evee |
— o
deciding change ooo
dep. of resource
employee n acquirement [Clewe F—— tevae 1| . . .[tevaen |
employee n+1 agenda n agenda n+1 | |
no entry find distributor levae leuae
10
[teupe] [leupe]

change decided

Figure 11: Scenario Situations

22

is created again (situation 6 in figure 11). This may happen again and again until the
fifth agency firing is started. During the following activation check the examination of the
laddering attribute yields that no further agency incarnations may be created. No additional
processing is performed after detecting this.

When the dialogue of agency select for change dealing with the database record is terminated,
this record is written into channel changing resources. An activation check is performed for
the agencies select for change, arrange test and design resource. After the termination of
the dialogue just mentioned, the related agency incarnation is deleted. So the activation
check of agency select for change yields that an agency incarnation may be created again.
The predicate evaluation still yields true (similar to situation 4 in figure 11). There are no
conflicts to solve for agency select for change. Thus, it the agency displayed in the agenda
again (situation 5 in figure 11).

The examination of the laddering attribute of agency arrange test yields that an agency
incarnation may be created. There are no predicates to be evaluated. Thus, an incarnation
is created. Since agency arrange test is a manual agency, it is displayed in the agenda.
The same holds for agency design resource. This way we get three agenda entries after the
termination of agency select for change. They are displayed according to the permissions of
the different process participants (situation 7 in figure 11).

Suppose that a member of the department of resource management selects the agenda entry
of agency arrange test together with the database resource record as parameter. Since agency
arrange test is in conflict to agency design resource, its entry is removed from all agendas in
addition to the selected entry. The firing of agency arrange test is started. The incarnation
of agency design resource is deleted. For both agencies an activation check is performed. We
suppose that channel changing resources had been filled with additional objects by parallel
firings of agency select for change. So the presets of both agencies design resource and arrange
test are filled. Since their laddering attributes still permit the creation of agency incarnations
and there are no predicates new agency incarnations and agenda entries are created (situation
8 in 11).

The next interesting part of the algorithm is used when firing agency test buyable resource.
This is done after a test of the replacement database has been arranged and when it is subject
to be performed. As soon as the agenda entry of this agency is selected, the firing is executed
by creating a new son process. The objects are shifted to channel resource to be tested in
figure 6. Then, an activation check is performed for the created process as already described.
The operating system processes communicating with the process engine do not recognize the
creation of son processes. Thus, the resulting situation is similar to, for example situation 5
in figure 11.

After the new database has been installed and the resource record has been written into
channel installed test resource, an entry for agency design test in figure 7 appears in the
agenda in the way already described. When the entry is selected, the algorithm recognizes
that agency perform resource test is refined and marked as agenda bypass. Therefore, a new
son process is created to handle the bypass. Again the creation of the son process is not
recognizable from outside the process engine. The user who has selected the agenda entry is
assigned to the new process in order to enable the process engine to automatically display
all dialogues of the new process on his terminal without displaying any entry in the agenda.
The database resource record in channel installed test resource is shifted to its companion
channel in the new son process. The son process is executed in the way already described.

As soon as the test of the new database is finished, the resource record is written into
channel tested resource. When writing the object, the algorithm recognizes that channel
tested resource does not belong to the agenda bypass. The object is shifted back to the
father process which is bound to agency test buyable resource in figure 4. Since the net of
the agenda bypass process is dead the bypass process is deleted. Then the dead net check

23

is carried out for the father process of the process just deleted. This is the bound process
which is dead, too. Therefore the resource record is shifted from channel tested resources in
figure 6 to channel tested resources in figure 4. Then the bound process is deleted, too.

When the object reaches channel tested resources after the firing of agency test buyable
resource, activation checks are carried out for this agency as well as for the agencies decide
change and print resource test. The laddering attribute of agency test buyable resource
permits the creation of a new agency incarnation. However, the preset of the agency is
empty. This prevents further processing of the agency. The laddering attribute of agency
print resource test permits the creation of a new agency incarnation, too. Its preset is filled.
The predicate ensuring that agency print resource test is executed only once for each record
yields true. Thus, a new agency incarnation is created and inserted into the incarnation list
which had been empty before.

In the same way, a new incarnation for agency decide change is appended to the incarnation
list now consisting of two elements.

At this point, the algorithm realizes that agency print resource test fulfills the special require-
ment for copy conflicts, which permits the agency to be executed at once. When starting the
firing, the incarnation is removed from the incarnation list. The other incarnation remaining
in the list is handled as already described for manual agencies resulting in situation 9 in
figure 11.

When agency decide change terminates its firing the resource record is written into channel
resources to be bought. When writing the object, it is realized that this channel is an interface
channel. Therefore the object is passed to channel resources to be bought in figure 5. There,
the object is handled as if it was created during the termination of an agency firing. We
suppose that the respective process had been started resulting in situation 10 in figure 11.

6 Experiences and Conclusions

In using FUNSOFT nets for process modeling for about eight years, we came along dif-
ferent requests for more comfortable process modeling. Some of these requests resulted in
modifications of the modeling tools, a very few had some influence on the modeling concepts.

In FUNSOFT nets we tried to keep the number of modeling constructs as small as possible
as long as people were able to model things with the available constructs. Nontheless we had
to integrate some extensions which were raised in a project, in which about 40 modelers de-
scribed all business processes of several housing construction and administration companies.
These extensions (agenda bypasses, processes bound to agencies) were not needed in the
earlier software process modeling experiments, but they eased modeling of certain situations
substantially.

These extensions meant to also extend the enaction algorithm. The initially simple FUN-
SOFT net enaction algorithm had to be extended to cope with additional modeling concepts.
The decision to integrate different process engines by message passing on the hand and by
using a common database also meant to extend the enaction algorithm (in this case by
communication facilities between process engines).

The extensions discussed were integrated, but resulted in an enaction algorithm, which -
even though its internal structure remains clear - became more and more difficult and, thus,
less extensible. Based on this experience, it was rather difficult to decide between modeling
comfort (usually demanding new modeling constructs) and ease of enaction (demanding that
as few constructs as possible have to be taken into consideration).

Summing this up, we believe that the number of modeling concepts should be kept as small

24

as possible. Comfortable modeling should not justify any extension. But, of course, the
modeling language must allow to express business process situations as they are (without
burdening them under too much syntactical details demanded by the modeling language).
Only then, it is reasonable to let people, who know their processes, take part in process
modeling.

References

[1]

[10]

[11]

[12]

S. Bandinelli, A. Fugetta, and S. Grigolli. Process Modelling In-the-Large with
SLANG. In Proceedings of the 2% International Conference on the Software Process -
Continuous Software Process Improvement, pages 75—83, Berlin, Germany, February
1993.

W. Deiters and V. Gruhn. Managing Software Processes in MELMAC. In Proceedings
of the Fourth ACM SIGSOFT Symposium on Software Development Environments,
pages 193205, Irvine, California, USA, December 1990.

W. Deiters, V. Gruhn, and H. Weber. Software Process Evolution in MELMAC.
In Daniel E. Cooke, editor, The Impact of CASE on the Software Development Life
Cycle. World Scientific, Series on Software Engineering and Knowledge Engineering,
1994.

J.-C. Derniame and V. Gruhn. Development of Process-Centered IPSEs in the ALF
Project. Journal of Systems Integration, 4(2):127-150, 1994.

G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka. Business Process Modeling
in the Workflow Management Environment LEU. In P. Loucopoulos, editor, Pro-
ceedings of the 13" International Conference on the Entity-Relationship Approach,
pages 46-63, Manchester, UK, December 1994. Springer. Appeared as Lecture Notes
in Computer Science no. 881.

C. Ghezzi, editor. Proceedings of the 9" International Software Process Workshop,
Airlie, VA, US, October 1994.

G. Graw and V. Gruhn. Process Management in-the-Many. In W. Schéfer, editor,
Software Process Technology - Proceedings of the 4" European Software Process Mod-
eling Workshop, pages 163-178, Noordwijkerhout, Netherlands, April 1995. Springer.
Appeared as Lecture Notes in Computer Science 913.

V. Gruhn. Validation and Verification of Software Process Models. In A. Endres and
H. Weber, editors, Proceedings of the European Symposium on Software Development
Environments and CASE Technology, Kinigswinter, FRG, pages 271-286, Berlin,
FRG, June 1991. Springer. Appeared as Lecture Notes in Computer Science 509.

K. Hales and M. Lavery. Workflow Management Software: the Business Opportunity.
Ovum Ltd., London, UK, 1991.

P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in Coloured Petri Nets. In Proc.
of the 101" Int. Conf. on Application and Theory of Petri Nets, pages 192-209, Bonn,
FRG, 1989.

S. Jablonski. Functional and Behavioral Aspects of Process Modeling in Workflow
Management Systems. In Connectivity ’94 - Workflow Management - Challenges,
Paradigms and Products, pages 113-133, Linz, Austria, October 1994. R. Oldenbourg,
Vienna, Munich.

G.E. Kaiser, P.H. Feiler, and S.S. Popovich. Intelligent Assistance for Software De-
velopment and Maintenance. IEEE Software, 5(3):40-49, May 1988.

25

[13]

[19]

J. Lonchamp. A Structured Conceptual and Terminological Framework for Software
Process Engineering. In Proceedings of the 2"¢ International Conference on the Soft-
ware Process - Continuous Software Process Improvement, Berlin, Germany, February
1993.

L. O’Conner, editor. Proceedings of the 2"¢ International Conference on the Soft-
ware Process - Continuous Software Process Improvement, Berlin, Germany, February
1993.

B. Peuschel and W. Schifer. Concepts and Implementation of a Rule-based Process
Engine. In Proceedings of the 14th International Conference on Software Engineering,
Melbourne, Australia, May 1992.

W. Schifer, editor. Software Process Technology - Proceedings of the 4" European
Workshop on Software Process Modelling, Noordwijkerhout, The Netherlands, April
1995. Springer. Appeared as Lecture Notes in Computer Science 913.

K.D. Swenson. Interoperability Through Workflow Management Coalition Standards.
In Proceedings of the Workflow 199/, pages 185197, San Jose, US, August 1994.

R.N. Taylor, F.C. Belz, L.A. Clarke, L. Osterweil, R.W. Selby, J.C. Wileden, A.L.
Wolf, and M. Young. Foundations in the ARCADIA Environment Architecture. In
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 1-13, Boston, 1988. Appeared
as Software Engineering Notes, 13(5), November 1988.

B. Warboys. Reflections on the Relationship Between BPR and Software Process
Modelling. In P. Loucopoulos, editor, Proceedings of the 13" International Conference
on the Entity-Relationship Approach, pages 1-9, Manchester, UK, December 1994.
Springer. Appeared as Lecture Notes in Computer Science no. 881.

26

