
Principles of Possible Core Structures of Artificial
Intelligences

Holger Burbach
Lüdenscheid, Germany

holger@burbach.eu

April 2022

Abstract—Since construction of an artificial intelligence is
an explosive topic maybe first the concepts of its construction
should be discussed before starting to implement them. This is
a contribution to this discussion. The solution of the problem
how to achieve representational completeness in a universal way
by nowpoint graphs suggests to find universal engines to process
these graphs. The engines represent areas of a neural network
brain. The intelligent solution is meant to be more than the sum
of its unintelligent parts. The evolution of the human brain seems
to be still working on a good setup of these engines. The trick is
to set up an engine collection which produces meaningful results
and then get it trained correctly.

Index Terms—artificial intelligence construction, natural lan-
guage understanding, representational completeness, representa-
tion problem, nowpoint graph, chat bot

I. INTRODUCTION

This article is not based on software working as desired.
It is inspired by current human brain research. It describes
a concept for the construction of an artificial intelligence to
avoid the problems arising by first secretly building an artificial
intelligence. The first rversion of the software described in this
article will not be (that) intelligent, but it can serve as a proof
of concept.

The key idea is a universal engine which can process a
nowpoint graph [1]. The solution is not one all purposes
fitting universal engine version but a collection of engines
each processing one computable unintelligent aspect of an
intelligent brain. These aspects can be emotions, mind, will,
input, output, self recognition of output and endless more.
Between the engines lists of references to nodes of the
nowpoint graph are passed. Each engine can add further nodes
to the graph and pass lists of node references to connected
engines depending on the aspect it processes.

Since addition of nodes has to be complemented by the
deletion of nodes a cleanup unit is necessary to delete the least
important nodes when the graph becomes too big or when too
much rubbish has been produced.

Since the whole brain has to be managed in some way
a brain management unit for at least boot and shutdown is
necessary.

Since the engines work in parallel the passing of nodes
between them has to be synchronized by a clockwork unit.
The length of the processing of one single unit of work has to

be optimized carefully to avoid engines waiting too long for
other engines to complete the current unit of work.

In the following sections several elements of the ideas
mentioned so far in this text will be discussed. First the
data structure (nowpoint graph) is described. Then types of
nowpoint graph engines are focused on. After that the overall
setup of a collection of engines is discussed.

As illustrating example the engine setup for a program you
can chat with in natural language is used, commonly called a
chat bot. This example shows an additional approach to natural
language understanding and processing [2] [3] [4].

II. THE NOWPOINT GRAPH DATA STRUCTURE

As described and motivated in [1] a graph is used as data
structure. Most nodes in this graph are of one single type. One
node can represent anything. Just regard it as a thought. It can
optionally be attributed by a byte array of arbitrary length.
This byte array can be any meaningful piece of data. Derived
from [1] possible operations on these nodes are:

• Create: A node is created and optionally attributed with
a byte array. An example for this can be an input word
read from the terminal. Depending on the functionality
of the creating engine in normal cases the new node is
further connected to other nodes by new directed edges,
for example to create a chain of nodes attributed with
words from an input sentence from the terminal.

• Delete: A node together with its incoming and outgoing
edges is removed from the graph.

• Read: The byte arrays of a set of nodes are read for
further ordinary processing by a computer like output on
a device.

• Concretisation: This operation produces a set of new
nodes with directed edges pointing from the source node
to the new nodes. Depending on the functionality of the
engine doing this concretisation the byte array of the
source node may optionally be used to create new byte
arrays for attribution of the new nodes. An example would
be the simple operation of assigning one byte of the array
of the source node to one node each.

• Abstraction: For a set of nodes one new node is created
with directed edges pointing to each of the nodes of the
set. Depending on the functionality of the engine doing



this abstraction optional bytes from the byte arrays of the
nodes from the set may optionally be used to produce a
new byte array for attribution of the new node.

The above list of operations is only a suggested subset of
the unlimited set of possible operations. Additional single
management nodes may be necessary to enable the engines
doing their work or setting up working sets of nodes at boot
time. Be aware, that the byte arrays described above are always
optional. A thought (node) can exist without bytes attached to
it.

III. A SINGLE NOWPOINT GRAPH ENGINE

One single nowpoint graph engine consists of the following
elements:

• Unique identification of the engine type, for example by
a name character string and a Java class.

• Multiple input lists of nodes from other connected en-
gines, for example of the type of a single list in Java.

• Multiple output lists of nodes to other connected engines,
one list to one engine in a step of work from the
clockwork unit

• Management of input and output subscribers of node lists
by an API

• Proper communication with clockwork unit, brain man-
agement unit, cleanup unit and connected engines by an
API

• Processing of all input node lists with one output node
list to each connected engine: This element makes up the
difference between engine types. A subset of unlimited
possible ways of processing input nodes is described in
the next section.

Be aware that the overall connection of engines to a network
of engines is fixed.

IV. TYPES OF NOWPOINT GRAPH ENGINES

There are four differences between different types of en-
gines:

1) Simple identification of the engine type
2) Way of processing input note lists and producing the

output node lists
3) Way the engine is connected to other engines by the

management unit at boot time
4) Own central management node, new nodes created by

this engine can be connected to by incoming directed
edges from the management node

Types of engines can be derived from the different areas of a
human brain identified so far [5]. For the description here we
concentrate on a simplified subset of possible types adapted
to our application of a chat bot. Operations on the nowpoint
graph and input and output node lists of our example engines
during one processing step synchronized by the clockwork unit
are as follows. All engines are named to simplify references
during description.

• Engines for which the node processing does not depend
on the type of input engines:

– Text input: A sentence from the input terminal is
transformed into a sequence of nodes connected
with directed edges. Each node in the sequence is
attributed with the character string of one word. An
abstraction node is created for all the nodes of the
sentence. The list of nodes created is used as output
list. This engine is named Text Input Engine.

– Emotions input: The engine issues an emotions node
as output list depending on information from outside
the chat bot like pitch of spoken words used for text
input or direct input emotion choice by the user.
Details have to be fine tuned here. This engine is
named Emotions Input Engine.

– File input: This engine reads a file, assigns it to a
node as byte array and outputs this node to connected
engines. This engine is named File Input Engine.

– Text output: Each input list of nodes is printed in
the sequence of input to the output terminal. The
attributed byte array of the nodes are interpreted as
character strings. Multiple input lists during one step
of work from the clockwork unit are used for output
in random order. This engine is named Text Output
Engine.

– Current time input: For each input list of nodes an
abstraction node is created and attributed with the
current time in milliseconds. The created nodes are
used as output list in random order. If there is no
input node list a single node is created and used
as output list. This engine is named Current Time
Engine.

– Current text input user recognition: For each input
list of nodes an abstraction node is created and
attributed with the text string representing the name
of the current user. The created nodes are used as
output list in random order. If there is no input node
list a single node is created and used as output list.
This engine is named User Recognition Engine

– Self recognition of text output: For each list of
input nodes an abstraction node is created. This
abstraction node is connected to the one single main
management node of this engine by an incoming
directed edge. The created nodes are used as output
list in random order. This engine is named Output
Recognition Engine.

– Current nowpoint graph size: For each input list of
nodes an abstraction node is created and attributed
with the current graph size at this processing time
as an integer number. The created nodes are used as
output list in random order. If there is no input node
list a single node is created and used as output list.
This engine is named Graph Size Engine.

– User is inputting: During this processing step a
single output node is created if the user is currently
inputting a sentence. This engine is named Inputting
Engine.

– Speech recognition: This engine maintains category



abstraction nodes connected to the management node
of this engine based on the concepts of appearance
and neighbourhood. For each word node in the input
node list an appearance abstraction node gets an
outgoing edge to this node. For the numbers 1 to
7 each row of neighbouring word nodes with this
count get a new neighbouring abstraction node with
outgoing edges to the appearance abstraction nodes
of the word nodes in the input node list. These
neighbouring abstraction nodes get incoming edges
from the management node of this engine. The
neighbouring abstraction nodes are not duplicated
for a given combination. Instead additional appear-
ances of a given combination reduce the chance of
deletion of this abstraction node by the cleanup unit
managed by the reference counter. For the 1st level
neighbouring abstraction nodes of a given input node
list which have not just been newly generated but
have been found to be already existing the generation
of 2nd level neighbouring abstraction nodes is done.
This process is repeated until only one single node
is the result. This node represents the language of
the input node list sentence. This engine is named
Speech Recognition Engine.

– Speech production: This engine has access to the
management node of the Speech Recognition En-
gine. It reverses the process described for speech
recognition. The engine is named Speech Production
Engine.

• Engines with input list processing depending on the
engine the list is output by:

– Emotions: This engine links simple value nodes
(emotions) to input nodes and outputs the emotion
nodes. The value (emotion) used depends on input
nodes from the Current Time Engine, the Graph Size
Engine, the Inputting Engine, the User Recognition
Engine, the Mind Engine, the Will Engine, the Con-
sciousness Engine and the Emotions Input Engine.
The engine is named Emotions Engine.

– Mind: This engine interprets input node lists as pred-
icate logic expressions and performs unification over
this expression as proposed by Robinson [6] [7] . It
regards nodes with byte attribution as constants and
nodes without byte attribution as variables. Search
space are all nodes of the graph with byte attribution.
The engine takes input node lists from Consciousness
Engine and the Emotions Engine and produces output
node lists of the nodes it is currently working on for
the Emotions Engine, the Consciousness Engine and
the Speech Production Engine. The engine is named
Mind Engine.

– Will: This engine is responsible of the basic be-
haviour of a chat bot: takes input lists from the
Speech Production Engine and the Consciousness
Engine, remembers them for some time and after

some time sends the input list from the the Speech
Production Engine with the most positive emotions
to the Text Output Engine dropping the memory of
the other input node lists since the last output. This
engine is named Will Engine.

– Consciousness: This engine takes input node lists
from a lot of engines and produces output node
lists for the Will Engine, the Mind Engine and the
Emotions Engine. In this engine global goals of the
engine collection can be set up, for example affection
or aversion for a specific subject or behaviour. This
engine is named Consciousness Engine.

V. MEANINGFUL INPUT AND OUTPUT OF THE CHAT BOT

Until the time this text is written there is no engine
collection producing anything else but rubbish. The proper
collaboration of the Emotions Engine, the Mind Engine, the
Will Engine and the Consciousness Engine is critical for
meaningful intelligent behaviour. The author is convinced that
it makes sense to invest time in developing this collaboration.
Even when the engine setup is finally useful a lot of training
will be necessary to make this AI adult. The author is
convinced that this can be done. The result would be intelligent
behaviour of a collection of unintelligent parts. The author is
convinced that intelligence is an emergent property.

VI. CONCLUSION

Of course it is problematic to describe a concept without
having solved all detail problems and finished the correspond-
ing software. However, it is the author’s opinion that the ideas
described in this article show the right direction to think in
to construct one possible version of an artificial intelligence.
Obviously the parts of the chat bot described in this article are
unintelligent. The main goal is to produce intelligence out of
unintelligent parts. It is important to be aware that there will
never be the one and only solution to the problem of setting up
a proper engine collection and thus constructing an artificial
intelligence. The next step is a proof of concept of the ideas
in this article.

REFERENCES

[1] H. Burbach, “On representational completeness,” 2020,
https://burbach.eu/nowpoint5.pdf.

[2] J. Allen, Natural Language Understanding. The Benjamin/Cummings
Publishing Company Inc., 1987.

[3] H. Helbig, Knowledge Representation and the Semantics of Natural
Language. Springer Verlag, 2006.

[4] P. M. Nugues, An Introduction to Language Processing with Perl and
Prolog. Springer Verlag, 2006.

[5] S. Standring, Ed., Gray’s Anatomy: The Anatomical Basis of Clinical
Practice (40th ed.). Churchill Livingstone, 2008.

[6] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” Journal of the ACM, vol. 12, pp. 23–41, 1965.

[7] ——, “Computational logic: The unification computation,” Machine In-
telligence, vol. 6, pp. 63–72, 1971.


