The FUNSOFT Net Interpretation Algorithm

Holger Burbach
Volker Gruhn
LION GmbH

Universitatsstralle 140

D-44799 Bochum

[burbach,gruhn)@lion.de

1 Introduction

The research in the area of software process management has yield basic progress in sofiware
process modeling and analysis. The henefits of defining a process in terms of a formal
langnage have been discussed and a number of examples of process modeling languages
have been proposed. These include rule-based (10, 11, 6], Petri-net-based [1, 3} and object-
oriented languages (5, 9. Despite some major process modeling and analysis projects, process
enaction expericnce for large-scale software processes is hardly available. In this article we
discuss the process engine for the enaction of process models described in terms of FUNSOI'T
nels. This process engine has been impacted hy large-scale process modeling projects from
different application domains.

2 The FUNSOFT net approach to process management

In the FUNSOI'T net approach, process models consist of data models, activity models,
and organization models. Data models describe types of nbjects to be manipulated and the
relationships between object types. They are represented by extended entity-relationship
models [8].

Activity models describe the activities to be executed within processes and their order. They
are represented by FUNSOFT nets [4). FUNSOFT nets are high-level Petri nets adapted to
the requirements of process modeling. T-elements of FUNSOFT nets represent activitics to
be executed in a process. They are called agencies. An agency is activatable (i.e. it can be
fired) as soon as all its inpul parameters are available. To fire an agency means Lo exccute
the activity represented by Lhe agency. S-elements of FUNSOFT nets represent object stores.
They are called channels. An object being stored in a channel is also called a token marking
the channel (in Petri net terminalogy). The notion of objects and the use of objects in Petri
nets is similar to the notion of objects in THOR nets [12]. Each channel is associated with an
object type. A channel to which a certain type is assigned can only be marked with objects
of that type. In FUNSOFT nets some modeling concepts are used which can not be [ound in
ordinary petri nets. These concepts have a strong influence on the interpretation algorithm.

The (ollowing list contains a short description of the concepts. For a more detailed discussion
we refer to (2, 7).

Predicates:

A predicate is a boulean function assuciated 1o an agency. In addition to any other
conditions the predicate has o be fulfilled to permit the firing of the agency. The result

- of the predicate may depend on ihe values of objects in channels in the preset of lhe
agency or may be time-dependent. i

Laddering attribute:
The laddering attribute of each agency specifies, how aften the agency may be fired
simuitaneously. 3

Processes bound to agencies: :
In a process model, which is supposed to be bound to an agency, input and output :
channels have to be identified explicitly. In binding a process model to an agency, these |
channels are mapped to channels in the pre- and postset of the agency the model is
bound to.

Agenda bypasses:
The boolean agenda bypass attribute determines how manual agencies of the refinement ! *
are treated. The first agency of such a refinement selected by a process parlicipant.
initiates that a new son process is created. The treatment of this son process resembles 3
the treatment of processes bound to agencies, kowever, with differcnces in the ireatment
of activatable agencics in the son process:

¢ Only agencies belonging to the bypassed refinement may fire. !

« For channels into which objecis have been written, it is checked whether they -
helong to the refinement or whether they are in the postset of the refined agency,
If they are in the postset, the objects are immediately shifted back to the father -
process with all consequences [ur activation checks.

» I an agency of the bypassed refinement has already becn selecled by a process
participant, then all activatable manual agencies are handled as if this process -
participant had selected them already. The bypass handling is terminated au-
tomatically when there is no activatable or artive agency left in the Lypassed
refinement (i.c. the refining FUNSOFT net is dead).

Automation attribute:
The boolean automation attribute of each agency spucilies whether the firing of the
agency may be started without informing any process parlicipant about it. '

Copy access to channels:
The boolean copy flag of each edge linking a channel in the preset of an agency with
this agency specifics whether the agency reads copies of the vbjects in the channel.

Interface channels:
If an object is written into an interface chaanel, all running processes in the models of
which the inilerface channel occurs receive a copy of the object. If there is no running
process with rcad access to the interface channel, the next process with read access
receives the object.

3 The Process Engine Algorithm

In this section, we describe the process engine algorithm implemented in the FUNSOFT oet
process engine. Since the embedding of the process engine into olher enaction components
influcnces the algorithm we have a glance at these componcnts. Each process engine commu- °
nicates with its own agenda controller. The task of this controller is to manage the dbplay

of agenda entries. It checks permissions and communicates with the agendas of the process
pasticipanis to [ullill its task. In arder to perform firings the engine uses an activity handler
which manages ihe lunction and dialog execution components. The work of the whole en- ;
vironment is managed by the environment controller. It allows ta start and Lo slop process ‘

3]

engines and agenda controllers. The environment conlroller always knows, how many en-
gines arc running and what they are interpreting. Process participants who have the proper
perm ission may use their agendas to send commands to the environment controller.

The purpose of the whole environment is the management of agenda entries and corresponding
agency firings. This is realized by relating agenda entries and agency firings to a central entity
of the pracess engine algorithm: the agency incarnation.

An agency incarnalion is created whenever the preset of an agency is marked and, thus,
the agency could be fired. Roughly speaking, the only functionality of the process engine
algorithm is to identify agency incarnations, to check il Lhey are executable (wilh respect
to predicates and conflicts) and to distribute them to the right process participants {ie. to
those process participants who have the permission to execute in their firing). Therefore, we
describe siructure of the algorithm by means of dataflow of agency incarnalions.

The dataflow describing the process engine algorithm is depicted in figure 1. Sets of agency
incarnations arc denoted by capital letters. The flow between the sets is described with the
help of edges which are denoted by capital letters with indices.

We refer to these capital letlers in the following explanation of figure 1. The initial assignment
of agency incarnations to sets is as follows: at the beginning of a process one agency incarna-
tion (for each agency of the process model} is in set A, all further agency incarnations (the
number of further agency incarnations is defined by the laddering attribute of each agency)
are in set E. If, for example, a process model contains n agencies f;,...,l, with laddering
attributes lad(t;), then A initially contains one agency incarnation for each £;,i = 1,...,n
and E initially contains lad(¢;) — 1 agency incarnations for each ¢;,i = 1,...,n.

A This sel contains agency incarsations to be checked for activalabhility.

Ay Agency incarnations can only be moved along this edge if the sets C,D,F,G, H are
empty. This cnsures that no agency incarnations are processed before the lasi ones are
completely checked. Thus it is guaranted that in each process engine activation cycle
all agency incarnation are considered. Only when this is done, the next cycle can b
started.

B Tor all incarnations reaching this set it is ensured thal multiple incarnations of Lhe
same agency are never processed al the same time. This would lead to syncronization
problems with other cnaction components.

By All incarnations passing the check in set B are moved along this edge.
Bx All incarnations failing to pass the check in snt I are moved along this edge.

C Tor all incarnations reaching this set it is checked whetlier the preset of the agency
incarnation is filled.

€y All incarnations passing the check in set C are moved along this edge.
€2 All incarnations failing to pass the check in set C' are moved along this edge.

D This set is used to manage predicates. If no predicate is assigned to the agency, then it
is considered true for cach agency incarnation as defantt. Agency incarnations in set D
are moved into set I if the related predicate is true for al least one token combinalion
and if conflicts have (o be resolved. They are moved directly into set H if no conflict
resulution is needed. I Lhe predicate is not fulfilled by any token combination and if the
predicate is not time-dependent(i.e. if it cannot be fulfilied by waiting) then the agency
incarnation is moved back to set A {i.c. it is checked in the next activation check). If
the predicate is time-dependent and if it not fulfilled by any token combination, then
agency incarnalions remain in sel D.

Gy
G,

H

H>

Ha

I
Iz

Ji
Ja

K,

This set contains all agency incarnations which are not to be processed in the current
state of process enaction.

An activation check may be started by moving to set A all agency incarnations, which
have to be checked.

A

This is the set of all agency incarnations which are waiting for other incarnations to

start their firing, e.g. Lo wait for agency incarnations which have been moved from set

D o set H directly. In order to enable a maximum number of firings these incarnations :

are started belore any other incarnations are moved into D.

This set is used to solve conllicts between agency incarnations which are expected to ;
start their firing automatically. The agency incarnations reaching the sel are divided

into two subscts: the subset of the winners of conflicts and the subset of the others
which are considered as conflict losers.

The losers of the conflict solution are moved along this edge.
The winners of the conflict solution are moved along this edge.

All agency incarnations reaching set H fulfill the condition: if it is in conflict with

another agency incarnations then at most one of both is to be started automatically. -

This set is used to distribute the agency incarnations between timer start, display in
agenda and automatic start.

The agency incarnations for which the timer has to be started are moved along this

cdge.

The agency incarnations which have to be diplayed in the agenda are moved along this
edge.

The agency incarnations which are (o be started at once are moved along this edge.
All agency incarnations reaching this set are displayed in the agenda.

All incarnations selected in the agenda are moved along this edge.

Agency incarnations which have been displayed in agenda and which lost their conflicts |
(because a process participant has selected a conflicting agency incarnation (compare 1

I1 and L) or because an automatic agency incarnation has been fired because a timer
has elapsed (compare J; and L)) are moved from I to A.

For all agency incarnations reaching this set a timer is started.
All agency incarnations for which a tuner has clapsed are moved along this edge.

This edge is used by agency incarnations which have lost their conflict (compare edge
Ig and set L)

For all agency incarnations reaching this set a firing is started.

Each incarnation which has ended its firing is moved along this edge.

For all agency incarnations reaching this set conflicting incarnations in set I or J are -

moved along the edges I, or J; respectively.

For all agency incarnations reaching this set an activalion check for another incarnation -

of the same agency is started by moving this incarnation along edge £ into sct A.

For all agency incarnations reaching this set an activation check is started for one

incarnation in set E of each agency whose preset has just been changed due to the]

termination of a firing.

EREPRT TV SRR C VP S RP I HURT SN

o e e A VMl 1 it Ao bl

The handling of agenda bypasses and processes bound to agencies in the process engine
algorithm remains to be clarified: if a new son process is created, the respective agency
incarnations are inserted into the sels A and E (following the rule for initial assigments of
agency incarnations Lo sets mentioned above). If the graph is dead with respect to the agency
incarnations of one process and if this process does not have son processes, then all agency
incarnations of this process are removed from all sets.

4 Experiences and Conclusions

In using FUNSOFT nets for process modeling for about nine years, we identified scveral
FUNSOFT net extensions which helped to make process modeling more comfortable. In
fact, some extensions turned out to be absolulely inevitable in large-scale process modeling
projects, even though smaller process modeling projects had not at all raised the need for
these extensions.

These extensions meant to also extend the process engine algorithm. The initially simple
FUNSOFT net process engine algorithm had to be extended to cope with these additional
modeling concepts. The decision to integrate different process engines by message passing on
the hand and by using a common database also meant to extend the process engine algorithm
by communication factlities between process engines.

The extensions discussed were integrated into the process engine algorithm. Thereby, the
process cngine algorithm became more and more complex. Even though its internal structure
remains clear it became less extensible. Based on this experience, it is rather difficult to
decide between modeling comfort (usually demanding new modeling constructs) and easc of
enaction (demanding that as few constructs as possible have to be taken into consideration).

References

{l] S.Bandinelli, A. Fuggetta, C. Ghezzi, and L. Lavazza. SPADE: An Environment for
Software Process Analysis, Design, and Enactment. In A. Finkelstein, J. Kramer,
and B. Nuscibeh, edilors, Software Process Technology - Proceedings of the 2™ Euro-
pean Softweare Process Modeling Workshop, pages 223-244 Somersct, England, 1994.
Research Studies Press Lid.

[2] H. Burbach and V. Gruhn. FUNSOFT Nets as Process Modeling Language. In
J. Desel, H. Fleischhack, A. Oberweis, and M. Sonnenschein, editors, 2. Workshop:
Algorithmen und Werkzeuge fir Pelrinetze, Oldenburg, October 1995. erschienen als
Bericht Nr. 22 des Fachbereichs Informatik der Universitit Oldenburg.

[B] W. Deiters and V. Gruhn. The PUNSOFT Net Approach to Software Process Man-
agement. International Journal of Software Engineering and Knowledge Engineering,
4(2):229-256, 1994.

[4 G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka. Business Process Modeling
in the Workflow Management Environment LEU. In P. Loucopoulos, editor, Pro-
ceedings of the 13" Intcrnational Conference on the Entily-Relationship Approach,
pages 46-63, Manchester, UK, December 1994. Springer. Appeared as Lecture Notes
in Computer Science no. 881.

5] G. Engels and L. Groenewegen. SOCCA: Specifications of Coordinated and Cooper-
alive Activities. In A. Finkelstein, J. Kramer, and B. Nuseibeh, editors, Software
Process Technology - Proceedings of the 2" European Software Process Modeling
Workshap, pages 71-100, Somerset, England, 1994. Rescarch Studies Press Ltd.

A

(7

(8]

{9l

(10]

[11]

[12]

P. K. Garg and S. Bhansali. Process Programming by Hindsight. In Proceedings of the
14th International Conference on Software Engineering, Mclbourne, Australia, May
1992.

V. Gruhn. Geschiftsprozef-Managemeni als Grundlage der Software-Entwicklung.
Informatik Forschung und Entwicklung, 11:94-101, Juli 1996.

V. Gruhn, C. Pahl, and M. Wever. Data Mode! Evolution as o Busis of Business
Process Management. In OOER95: Object-Oriented and Entily-Relationship Mod-
eling, pages 270-281, Gold Coast, Australia, Deccber 1995, Springer, Berlin. Ap-
peared as Lecture Notes in Computer Science 1021.

G. Junkermann, B. Peuschel, W. Schifer, and S. Wolf. MERLIN: Supporting Co.-
operation in Software Developmeni Through a Knowledge-Based Environment. In
B. Nuseibch A. Finkelstein, J. Kramer, editor, Software Process Modelling and Tech-
nology, pages 103-129, Somerset, England, 1994. John Wiley and Sons.

G.E. Kaiser, 5.5. Popovich, and 1.Z. Ben-Shaul. A Bi-Level Language Jor Software
Process Modeling. In Proceedings of the 15" International Conference on Software
Engineering, Baltimore, Maryland, US, May 1993.

C. Montangero and V. Ambriola. QIKOS: Constructing Process-Cenired SDEs. In
B. Nuscibeh A. Finkelstein, J. Kramer, editor, Software Process Modelling and Tech-
nology, pages 131-151, Somersct, England, 1994. John Wiley and Sons.

S. Schof, M. Sonnenschein, and R. Wieting. Efficient Simulation of THOR Nets. In
G. De Michelis and M. Diaz, editors, Proceedings of the 16"* European Workshop on
Application and Theory of Petri Nets, pages 412-431, Torino, Italy, 1995. Springer.
Appeared as Lecture Notes in Computer Science no. 935.

6

i

Lo«

v

o A.
> A:tobe cw_)*——ﬂ& inactive agency incamations)
g E

1
Al

B: incamation of same agency in
setsC,D,FtoJand LtoN ? B,

D: predicate truc for at least one
token combination ?

D,

LF: waiting for conflict solution J

F

(G: solving conflicts)
G

2

' J: timer elapsed ? |

I
/\

(.. R . Ve
L H: conflicts solved I~

H,

H,

L ¢ —»{ K firing sarted and ended?)

L: cancel agenda entries and timer events
for conflicting agency incarnations

1_I: selected in agenda ?)

I K

N: start activation check for agency
incamations in postset

1

M: start activation check for another
incamation of the same agency

Figure 1: The Agency Incarnation Dataflow

